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A B S T R A C T

The main intricacy in the human proteome is that it is tremendously complex and composed from diverse and
heterogeneous gene products. These products are called protein species or proteoforms and are the smallest units
of the proteome. In pursuit of the comprehensive profiling of the human proteome, significant advances in the
technology of so called “Top-Down” mass spectrometry based proteomics, have been made. However, the scale
of performance of this approach is still far behind the “Bottom-Up”, peptide-centric techniques. The classical
two-dimensional electrophoresis (2-DE) as the most powerful and convenient method for separation of pro-
teoforms remains as a superior method in “Top-Down” proteomics. Here, some aspects of approaches for es-
tablishing an inventory of proteoforms based on 2-DE and mass spectrometry are discussed.
Biological significance: The systematic efforts in the Human Proteome project to map the entire human proteome
greatly depend on currently available and emerging techniques and approaches. Here, the possibilities of a visual
representation of the human proteome by combination of virtual/experimental 2-DE with protein identification
by mass spectrometry or immunologically is discussed. By application of this approach on several profiles of
gene products we show its convenience in informative representation of the whole proteome and single gene
products, proteoforms (protein species). This approach could be very helpful in the emerging global inventory of
all human proteoforms.

1. Introduction

The main aim in human proteomics as it was proposed by the
Human Proteome Organization (HUPO) is a complete catalogue of all
human proteins. Until now, this survey of proteins was performed
mainly using the bottom-up approach that includes protein digestion
and subsequent mass spectrometric analysis of the peptides produced
by shot-gun on target mass spectrometry [1]. As the human genome is
deciphered and the number and the sequences of protein coding genes,
or even mRNA are known, the task is clear – find the corresponding
protein(s). Due to collaborative efforts inside the Chromosome-based
Human Proteome Project (C-HPP) this task is close to completion now.
From the list of 20,199 predicted proteins, 17,168 have already been
found (NextProt release 2017-08-01). Still ~3000 proteins remain as
so-called “missing proteins” and attract the special attention of the
proteomics community involved in C-HPP. But even after complete
identification of the human proteome by a high-throughput bottom-up
approach, only representative proteins will be identified in most cases

[2]. The situation in proteomics is much more complicated as proteins
can exist as different forms (protein species/proteoform) [3–5]. The
term “protein species” was introduced for the description of the smal-
lest unit in the proteome − “chemically clearly-defined molecule” [3].
Lately, the another term basically having the same meaning was coined.
This term ‘proteoform’ is “to be used to designate all of the different
molecular forms in which the protein product of a single gene can be
found, including changes due to genetic variations, alternatively spliced
RNA transcripts and post-translational modifications” [5,6]. It looks
like this term is more compatible with a gene-centric approach for re-
ferring to a protein/gene, from which each proteoform originates, as
citing Jungblut et al. “the term protein refers to its coding gene and,
therefore, is the umbrella term for all of the developing protein species”
[7]. It is of note to mention that the term “proteoform” actually
sometimes is used for conformational variants of the same protein as
well [8]. But in this review, this word is used only as a synonym for
protein species with above mentioned definition made by Smith, and
Kelleher [5]. Even inside this definition frame, a proteomics avenue of
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proteoforms is very wide and long, and could encompass many billions
of components [9–12]. For instance, all combinations of modifications
(~30) of just histone H3 alone can theoretically produce>1 billion of
protein species [10,13]. Therefore, it seems that refined versions of
high-throughput bottom-up approach and a clear strategy in proteo-
form profiling is needed [14–16]. Because of such a variety of proteo-
forms, range of concentration (7–8 orders of magnitude), and dynamic
changes during life cycle, their identification and quantitation is a
challenge difficult to attain. Nevertheless, there is evident progress in
this area. If, to date, the main workhorse in proteomics was Bottom-Up
mass spectrometry, it is the Top-Down approach that is becoming pre-
eminent today [17]. Top-Down proteomics implies that mass spectro-
metry is applied at the proteoform level, allowing the acquisition of
information about all intramolecular complexity preserved during
analysis, that might be overlooked in Bottom-Up shotgun workflows
[17,18]. Here, several approaches will be discussed, where a combi-
nation of top-down and bottom-up approaches is utilized to optimize
the proteomics analysis. Though MS is a central technique and a driving
force in proteomics, large scale Top-Down proteomics cannot be just a
one-step procedure. There are also several protein fractionation or se-
paration steps involved in protein species/proteoform analysis. Ac-
cordingly, different schemes could be used to establish a base for a
comprehensive protein species/proteoform inventory.

2. Top-Down mass spectrometry based proteomics

Bottom-Up mass-spectrometry, especially targeted mass-spectro-
metry (MRM), offers unrivaled utility for sensitive and accurate de-
tection of target proteins. However, the protein complexity the typical
MRM assays cannot overpower and may fail because a same signature
peptide may actually be present in different proteoforms.

[19,20]. To be unambiguously identified, proteoforms should be
analysed with 100% sequence coverage [21]. So far this task has ap-
peared surreal in proteomics [21]. A strategy of top down mass spec-
trometry combines separation of proteins with individual analysis. Not
long ago, Top-Down mass spectrometry allowed the confident identi-
fication of only the most abundant proteins [22]. However, now much
deeper large-scale analysis is possible due to vast improvements
[23–25]. Now Top-Down proteomics can be performed not only by
Fourier-transform ion cyclotron resonance mass spectrometry but also
on Orbitrap MS instruments [17,26–28]. A number of reviews have
already been published about technical aspects and application of the
field [16,17,25,29], but some points can be mentioned here. Various
fragmentation modes (ETD, HCD, UVPD, ETDhcD) have been exploited
to maximize sequence coverage and increase the chance of detecting
PTMs inside intact proteins [30]. Among them, higher energy colli-
sional dissociation (HCD) is a well-characterized method that provides
the best compromise between speed and the number of identified
proteoforms [26]. Alternative fragmentation methods have been de-
veloped to increase sequence coverage and number of identified PTMs:
ultraviolet photo dissociation (UVPD), electron transfer dissociation
(ETD), hybrid electron transfer dissociation / higher energy collisional
dissociation (EThcD) [26,31–34]. The complementary nature of HCD
and UVPD fragmentation for more extensive protein profiling and
proteoform characterization was shown using an Orbitrap Fusion
Lumos platform [30]. Usage of different fragmentation modes allows
direct quantification of proteoforms [18], and determination of the
order of multiple modifications [35,36]. For instance, electron transfer
dissociation (ETD) fragmentation allows the detection of twice as many
ubiquitination sites compared to a traditional higher-energy collision
dissociation (HCD) method [37]. It is interesting that the EThcD
method can give almost the same information as HCD and ETD to-
gether. It appears that EThcD is especially advantageous for de novo
sequencing and detection of PTMs, phosphorylation, and N-glycosyla-
tion, for instance [38,39]. Another challenge for top-down mass-spec-
trometry is data analysis and the application of tools for protein

database searching. The data generated by mass spectrometers should
be adequately processed to completely characterize proteoforms. Now,
there is a panel of software tools available for top-down proteomics
(PIITA, MASH Suite, MS-Align+, MS-Deconv, ProSight PTM 2.0, Pro-
teinGoggle and others). ProSight PTM was the first one designed for the
identification of intact proteins [40,41]. Also BIG Mascot or MascotTD
that utilizes the popular Bottom Up software platform, Mascot, was
applied for top-down analysis by doing some adjustments (extending
the precursor mass cutoff to 110 kDa, for instance, as a precursor ion
limit with this cutoff is much higher than in case of bottom-up analysis)
[42]. The size of the precursor ion is only one of many issues that need
to be considered in Top-Down software. But as top-down proteomics
continues to develop, undoubtedly better software will be designed
[43]. What is more, a Consortium for Top-Down Proteomics (CTDP) has
been formed http://www.topdownproteomics.org, with the mission ‘to
promote innovative research, collaboration and education accelerating
the comprehensive analysis of intact proteins’ [43,44]. CTDP launched
a proteoform database “Proteoform Atlas” and is working now to de-
velop rules for the method (nomenclature), to use for describing fully
characterized protein species/proteoforms. This nomenclature would
be a valuable part of a proteoform inventory https://
topdownproteomics.github.io/ProteoformNomenclatureStandard/

2.1. Separation techniques for sample preparation

Successful implementation of a Top Down approach requires the use
of one or more steps of separation prior to mass spectrometric analysis
[16,45,46]. Some separations can be used on-line with a mass spec-
trometer, but many can be applied off-line only. Examples of on-line
separations are chromatography (HPLC) and capillary electrophoresis.
HPLC is a robust and routine technique used for bottom-up and top-
down mass spectrometry. Capillary electrophoresis (CE) followed by
top-down MS is also a powerful technique to fully characterize protein
isoforms and combinatorial post-translational modifications (PTMs)
[47,48]. All these on-line separations allow increased throughput and
substantially reduce sample handling but have limitations to sample
loading, data acquisition, and separation conditions. Accordingly, off-
line separation(s) look very attractive, even considering increased time
needs to collect and treat fractions. But this approach is more flexible
and allows the use of more diverse and multiple separations. The
workflow for high-throughput Top-Down proteomics used in the Kel-
leher group is an example of such an approach [18,28]. Here, a whole
cell extract goes through two different off-line separation steps and one
on-line prior to analysis by mass spectrometry. The off-line separation
steps are solution isoelectric focusing and a size-based separation (Gel
Elution Liquid Fraction Entrapment Electrophoresis, GELFREE). The
fractions are cleaned to remove SDS and go to reversed phase liquid
chromatography prior to MS analysis http://www.kelleher.
northwestern.edu/research/top-down-proteomics/. Finally, protein
identification and characterization are completed with ProSight [49].
What is important, as you may notice, this workflow actually is a re-
make of the well-known two dimensional gel electrophoresis (2-DE)
[50].

3. Two dimensional gel electrophoresis (2-DE)

2-DE was a driving force in the appearance of the term “proteome”
[51]. For a long time, 2-DE was a workhorse of proteomics [50,52–56].
It is interesting that despite the domination of mass spectrometry, this
approach still remains in high demand to-day. Among protein separa-
tion methods, a high resolution 2-DE is the best and can be considered
not just as a separation technique but as an analytical method, as it is
the technology with the highest separative power for proteins being
made with engineered pH gradients. What is more, the protein para-
meters that can be measured by 2-DE are isoelectric point (pI) and
molecular weight (Mw). These parameters are specific to every
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chemical signature representing a protein molecule. No wonder that not
only the term “proteome” but also “protein species” originated from 2-
DE [4,51,57]. Many comprehensive reviews describing strong as well as
weak points of 2-DE were published [58–61]. Though not complete
proteome can be analysed by 2-DE (some hydrophobic proteoforms and
proteoforms with extremely acidic or basic pI can be missing), a data-
base for proteins based on 2-DE (World-2DPAGE Repository) http://
world-2dpage.expasy.org/repository was developed. The data used in
this database were derived mostly from its combination with mass
spectrometry and immunodetection. The data representation is based
on visual properties of 2-DE gels. An example of such a protein in-
ventory is shown in Fig. 1. What is more, when using 2-DE with sub-
sequent immunostaining (2-DE Western-blot), it is possible to obtain
profiles of specific proteoforms [62–64]. Yet, it should be noted that
Western-blotting with a single antibody may not detect all proteoforms
of a protein. It depends on antigen specificity of the antibody, as not all
proteoforms of the same protein can contain this antigen. Additional
application of a panel of more specific antibodies (phosphorylation,
acetylation, glycosylation…) or in vivo isotope labelling can give more
detailed information about these proteoforms [65–68]. Such a profile of
PCNA proteoforms is shown in Fig. 2. It should be also kept in mind that
these profiles can be ambiguous, as pI/Mw parameters for some pro-
teoforms can coincide. For instance, a same single modification
(phosphorylation, acetylation…) but in different sites, will produce
different proteoforms having the same pI/Mw. In a classical 2-DE-based
approach in proteomics, after 2-DE separation and protein staining, the
spots are cut and analysed by mass spectrometry (usually by MALDI

TOF MS using peptide mass fingerprinting, PMF). This method can be
called “a spot-based approach”.

PMF algorithms assume that there is only one protein in a spot and
the peptides are derived from this protein only [70]. Accordingly, by
PMF usually only one protein in a spot can be identified. If only a single
protein presents in a single spot, this technique is very efficient. This
opinion has been the prevailing one since the invention of 2-DE [50]. In
accordance with this opinion, comparative spot analysis of 2-DE gels is
performed, when it is desired to compare protein levels between dif-
ferent samples. But recently, using MS/MS techniques, it was revealed
that a single 2-DE spot can contain several proteins [72,73]. In this case,
ESI LC-MS/MS has evident advantages over MALDI TOF MS and even
MALDI TOF MS/MS, as it can perform a qualitative and quantitative
analysis of each spot in a single run. An example of this approach is
shown in Fig. 1. Here, spots are marked according to protein identifi-
cation by MALDI TOF MS. In addition to these major proteins, sub-
sequent analysis by ESI LC-MS/MS revealed the presence of less
abundant proteins in many spots. Also, the same proteins were found in
different spots (different proteoforms). Several examples of such pro-
teins (ENOA, GRP75, and G3P) are shown in Fig. 3 (left). There are
several weak points in this “spot-based” approach. One of them is that it
completely depends on staining sensitivity and only stained spots can
be analysed. In the case of sophisticated samples containing thousands
of proteoforms, such as mammalian cell extracts, a lot of information is
missing even when sensitive fluorescent dyes are used. Even further
improvements cannot change the situation drastically here [74,75]. To
solve this problem, a sectional analysis of 2-DE gels, or so called “pixel-

Fig. 1. 2DE map of HepG2 proteins. Spots with proteins identified by MALDI TOF-MS are annotated. Gel image analysis was performed by the program ImageMaster
2D Platinum 7.0 (GE Healthcare). Sections in the 2D gel selected for following LC ESI-MS/MS analysis are shown. Adapted from [69].
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based approach” was introduced [76,77]. As you can see in Fig. 1, a
whole gel (like the one used for “spot-based analysis”) can be cut into
sections (marked from A to H in pI direction and from 1 to 12 in Mw
direction). Each section is analysed by ESI LC-MS/MS and the dis-
tribution of proteoforms around the gel can be revealed (Fig. 1). All
proteoforms that are separated and located inside the 2-DE gel should
be identified using this approach. The final detection of these proteo-
forms depends ultimately on the sensitivity of mass spectrometry. For
instance, in the case of analysis of HepG2 cells, 20,462 proteoforms
were identified, encoded by 3774 genes [69]. For glioblastoma cells –
16,012 proteoforms, encoded by 4050 genes were found [77]. What is
more, this approach allows the generation of a “panoramic” view (3D-
graphs or pictures) of proteoforms corresponding to each of these genes
(so-called “one gene proteomes”). Examples of these pictures are shown
in Fig. 3 (right). Note that even with decreased resolution, many more
proteoforms (peaks) compared to Fig. 3 (left) are revealed for the same
protein. Such a visualization of proteoforms is just a first step, the next
most important step is identification of PTMs that are responsible for
each proteoform. This information can be extracted from MS/MS
spectra, considering application of fragmentation modes that are com-
patible with PTM detection and database search including as many
PTMs as possible [35,36,38,39,78]. As this workflow is very similar to
the workflow used by the Kelleher Research Group, it makes sense to
compare them (Table 1). According to this comparison we can make a
conclusion that these approaches are actually complementary.

If we can find an approach that allows us to combine the data
produced by these approaches it will give us a chance to organize all
this information in a convenient way.

Another approach for data representation is called a semi-virtual
two dimensional gel electrophoresis or “strip-based approach” [79]. In
this case, only one direction of 2-DE is used as a separation step (iso-
electric focusing, IF). Mass-spectrometry works here as a second di-
mension of 2-DE generating information about the Mw of proteins after
their identification using database searching. The final virtual 2D pic-
ture can be produced using Excel (Fig. 4).

In summary, 2-DE methodology (experimental, virtual and semi-
virtual) can be a good complement to other separative techniques to
implement the proteoforms atlas. This is possible because the 2-DE
methodology is based on two basic proteoform parameters, pI and Mw,
that can be measured (experimental approach) and calculated (virtual

approach).

4. Perspectives

It seems obvious that information about intact proteoforms (Top-
Down proteomics) should be obtained to identify variation in the
human proteome. However, the complete and comprehensive Top-
Down profiling of the human proteome is still beyond our reach. The
continuing evolution of mass spectrometry technology and usage of it in
combination with optimum protein separation techniques will finally
allow us to get an image of the whole human proteome. A combination
of methods for separation of proteins (2-DE) with bottom-up mass
spectrometry (shot-gun analysis of peptides by ESI LC-MS/MS) is an
efficient approach for increasing the productivity of tandem mass-
spectrometry. Additionally, this combination of Top-Down and Bottom-
up approaches together with immunological identification after 2-DE
allows very convenient visual representation (profiling) of information
about diverse proteoforms. This way will permit the development of a
knowledge base for an inventory of all human protein species/proteo-
forms that is visually attractive, clear, easy to search and perceptive.
The development of such an inventory will build on existing databases
like http://world-2dpage.expasy.org/, https://www.nextprot.org/,
http://www.uniprot.org/, http://atlas.topdownproteomics.org, which
are of crucial importance in the establishment of an inventory of all
human protein species/proteoforms.
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Fig. 3. Proteoforms identified after 2-DE separation and following ESI LC-MS/MS analysis. Detection was performed in spots (left) or sections (right). Proteoform
abundance (emPAI) is expressed as a ball size or a peak height.

Table 1
Comparison of panoramic proteoform analysis by the Kelleher Research Group and by 2-DE sectional approach.

Item Kelleher Research Group workflow http://www.kelleher.northwestern.edu/
research/top-down-proteomics/

2-DE sectional analysis [67,68]

Number of fractions in pI direction
(3−11)

8 8 and up

Number of fractions in Mw direction 12 12 and up
Mass range 10–100 kDa

35–150 kDa
75–500 kDa (different cartridge kits)

5–500 kDa single run

Number of all samples 96 96 and up
Amount of protein in a run Up to 5mg Up to 2mg
Gel staining and handling No Yes
Specific digestion No Yes
Recovery > 80% ~100%
Collection of fractions Manual Manual
Sample treatment before ESI LC MS/MS Yes Yes
Hardware LC MS/MS 12 T LTQ-FTMS, Orbitrap Q Exactive HF Orbitrap Q Exactive
Software ProSight PTM 2.0 2D Platinum, Mascot, SearchGui
Volume of information ~2000 proteoforms, ~700 genes ~20,000 proteoforms, ~4000 genes
Type of information Type of PTMs pI/Mw parameters of proteoforms, partial information

about PTMs
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